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Abstract

We present a case study evaluation of gill-net catches of Walleye Sander vitreus to assess potential effects of
large-scale changes in Oneida Lake, New York, including the disruption of trophic interactions by double-crested
cormorants Phalacrocorax auritus and invasive dreissenid mussels. We used the empirical long-term gill-net time
series and a negative binomial linear mixed model to partition the variability in catches into spatial and coherent
temporal variance components, hypothesizing that variance partitioning can help quantify spatiotemporal varia-
bility and determine whether variance structure differs before and after large-scale perturbations. We found that
the mean catch and the total variability of catches decreased following perturbation but that not all sampling
locations responded in a consistent manner. There was also evidence of some spatial homogenization concurrent
with a restructuring of the relative productivity of individual sites. Specifically, offshore sites generally became
more productive following the estimated break point in the gill-net time series. These results provide support for
the idea that variance structure is responsive to large-scale perturbations; therefore, variance components have
potential utility as statistical indicators of response to a changing environment more broadly. The modeling
approach described herein is flexible and would be transferable to other systems and metrics. For example,
variance partitioning could be used to examine responses to alternative management regimes, to compare varia-
bility across physiographic regions, and to describe differences among climate zones. Understanding how individual
variance components respond to perturbation may yield finer-scale insights into ecological shifts than focusing on
patterns in the mean responses or total variability alone.

*Corresponding author: tiffany.vidal@massmail.state.ma.us

"Present address: Massachusetts Division of Marine Fisheries, 1213 Purchase Street, New Bedford, Massachusetts 02740, USA.

Received July 26, 2016; accepted February 28, 2017

584



USING VARIANCE STRUCTURE TO QUANTIFY RESPONSES TO PERTURBATIONS

Perturbation due to anthropogenic or natural forces can
disrupt stable ecosystem conditions. Understanding how eco-
logical systems respond to large-scale perturbations, both gra-
dual and abrupt, has important implications for the
management and monitoring of natural resources. Ecological
systems include dynamic networks of complex interactions
within which organisms vary over space and time, but in far
more complex ways than independent deviations from a con-
stant mean. Although variability has often been viewed as
something to minimize through adequate sampling, it may
also provide valuable information about ecological processes
(Kratz et al. 1995). Ecosystems are influenced by many drivers
(Scheffer et al. 2001), which can induce changes in an eco-
system state rapidly (e.g., invasive species) or more gradually
over a longer period of time (e.g., climate change). The ways
in which a system responds to perturbations depend on com-
plex interactions between physical (e.g., climate and hydrol-
ogy) and biological processes (e.g., demographic and trophic
processes). In resilient systems, there is a high capacity to
reorganize after a disturbance, such that the state-space
remains essentially unchanged; in less resilient systems, how-
ever, the organization following disturbance can differ sub-
stantially from the predisturbance state. State-space can be
defined as the function, structure, identity, and feedbacks that
characterize an ecosystem state (Walker et al. 2004). It is
important to understand reorganizations because they may be
undesirable relative to conservation goals, management objec-
tives, and socioeconomic dynamics.

The idea that perturbation elicits a response in the varia-
bility of a state variable was set forth by Odum et al. (1979),
who defined an ecosystem perturbation as “any deviation, or
displacement, from the ‘nominal state’ in structure or function
at any level of organization. The nominal state is the normal
operating range, including expected variance.” In recent dec-
ades, attention has been paid to the identification of general-
izable indicators (e.g., changes in the mean, variance, and
skewness of variables, including pollutants, climatic moisture,
greenhouse gases, and chlorophyll) to detect and even predict
major ecological shifts (Brock and Carpenter 2006; Scheffer
et al. 2009; Carpenter et al. 2011).

We propose that shifting variance structure can be used as
an indicator of perturbation-induced ecological reorganization.
Partitioning total variability into dominant source components
(e.g., spatial and temporal) may provide quantifiable indicators
of population-level responses associated with major ecosystem
shifts and on time scales relevant to the monitoring and
management of fishery resources. Changes in variance struc-
ture may even indicate cascading effects of perturbations
through a food web (e.g., via species interactions). Similarly,
Underwood (1991, 1994) proposed using the temporal change
in variance as an indicator of perturbation-induced change,
although his proposed approach was flawed because the var-
iance estimates in his tests combine systematic and chance
temporal variation, sampling error, and autocorrelation
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(Stewart-Oaten and Bence 2001). Variance partitioning allows
variability to be partitioned into component sources, such as
spatial (site to site), coherent temporal (year to year), ephem-
eral temporal (site x year), trend, and observational error
(VanLeeuwen et al. 1996; Urquhart et al. 1998; Wagner et al.
2013). Irwin et al. (2013) applied such a variance partitioning
framework to fish count data, quantifying the contribution of
each component using a negative binomial mixed modeling
approach. If it can be shown that the source components of
variability are sensitive to how populations respond to ecolo-
gical shifts, this approach may prove valuable by identifying
or improving measurable attributes of responses to large-scale
perturbation.

Our objective was to examine whether indirect effects of a
large-scale ecological perturbation could be quantified retro-
spectively by a change in the structure of the variation (e.g.,
spatial and temporal) in a target population monitored using
standardized sampling. We present a case study analysis using
long-term monitoring data to explore the idea that an ecologi-
cal perturbation may induce a shift in a population’s under-
lying variance structure. Specifically, we analyzed count data
from a fishery-independent gill-net survey targeting Walleye
Sander vitreus in Oneida Lake, New York. Sustained monitor-
ing of Oneida Lake provides one of the most complete data
sets on freshwater fish populations in the world, and data from
this system have been used to advance understanding of food
webs, fish populations, and fisheries (Forney 1980; Nate et al.
2011; Rudstam et al. 2016b). We chose Oneida Lake because
it is a well-studied system that underwent a major ecological
shift during the early 1990s, when an increase in the double-
crested cormorant Phalacrocorax auritus (hereafter, “cormor-
ant”) population (Coleman et al. 2016) and an invasion of
dreissenid mussels (i.e., zebra mussels Dreissena polymorpha
and later quagga mussels Dreissena bugensis) occurred. We
predicted that these disturbances would be a strong enough
perturbation to the ecosystem that their effects would be
detectable in the variance structure of time series data pro-
duced by fishery-independent surveys. Specifically, we were
interested in three questions: (1) Can we detect a statistical
signal to support the timing of perceived transitions related to
these perturbations? (2) Do the magnitudes and relative con-
tributions of the variance components change in response to
perturbation? (3) Is there evidence of spatial reorganization as
a result of the perturbations? We used a model-based evalua-
tion with time-period-specific parameters to address these
questions.

METHODS

Study site—Oneida Lake has the largest surface area (206.7
km?) of any lake entirely inside the borders of New York State, and
it supports important recreational fisheries, including one for
Walleyes. Major changes to this ecosystem occurred during the
early 1990s, including increased cormorant abundance (Rudstam
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et al. 2004; Irwin et al. 2008a) and the establishment of nonnative
dreissenid mussels. The cormorant population increase is largely
attributed to reductions in environmental organochlorines (e.g.,
DDT) and release from human persecution (Weseloh et al. 1995;
Rudstam et al. 2004). Acting as a top predator in Oneida Lake,
cormorants have exerted strong predation pressure on the fish
populations, pressure that in some cases is comparable to that of
angler harvest (on adult fish) and even exceeds that of angler
harvest (on subadult fish) (VanDeValk et al. 2002; Rudstam et al.
2004; DeBruyne et al. 2013). At about the same time, dreissenid
mussels altered the ecosystem through increased water clarity
(Secchi depth increased from approximately 2.6 m prior to the
invasion to 3.5 m), disruptions to trophic dynamics, and significant
habitat modifications (Mayer et al. 2002; Zhu et al. 2006).

The Oneida Lake ecosystem in recent decades has been
thought to be fairly distinct from that in the years prior to the
major perturbations (Zhu et al. 2006; Irwin et al. 2016). The
early 1990s have previously been identified as the approxi-
mate break point in the time series associated with the major
changes in the lake (Mayer et al. 2000; Irwin et al. 2008b). It
should be noted that other ecological changes have likely also
had influences on Oneida Lake during the past several dec-
ades. For instance, nutrient loadings were reduced following
the signing of the Great Lakes Water Quality Agreement in
1972, and invasive White Perch Morone americana and
Gizzard Shad Dorosoma cepedianum periodically contribute
high production of young (Fitzgerald et al. 2006), which can
alter Walleye foraging behavior and potentially their catch-
ability. Angler harvest is also likely to vary over time. Even
so, cormorant predation and the presence of dreissenid mus-
sels have been thought to be the major drivers of changes in
the lake, including the decline of some fish populations
(Coleman et al. 2016; Irwin et al. 2016). For example, the
mean densities of Walleyes remained below their historical
averages for a number of years following the establishment of
dreissenid mussels and increased cormorant abundance during
the early 1990s (Rudstam et al. 2004; Irwin et al. 2008a).

Data.—We used data from a long-term (1958-2014
[excluding 1974, for which data were unavailable]), fishery-
independent survey of Oneida Lake by researchers at Cornell
University (Rudstam and Jackson 2015). This is a fixed-site,
annual survey conducted with standardized, variable mesh,
multifilament gill nets. The sampling gear is comprised of
four gangs (i.e., strings of nets) of six 7.6-m panels sewn
together, for a total net length of 183 m and a depth of 1.83
m. The mesh sizes within a gang consist of one panel at each
of the following stretched mesh sizes: 38, 51, 64, 76, 89, and
102 mm. The gill nets are set around sunset and hauled around
0730 hours. The survey spans the period from June through
mid-September, with one site being sampled per week in a
standardized sequence, for a total of 15 sites annually. All fish
captured in the nets are identified to species and enumerated,
resulting in 15 spatially explicit observations of Walleye catch
per survey year.
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Statistical analyses.—We used a negative binomial linear
mixed model to evaluate hypotheses as to how variance
structure responds to perturbation. The negative binomial
distribution was assumed for the response variable because
the variability in predicted Walleye catches was greater than
the mean (i.e., the data were overdispersed), thereby violating
the assumptions of the Poisson distribution. (The negative
binomial distribution is an extension of the Poisson
distribution with a shape parameter that makes it suitable for
overdispersed count data, which are characteristic of ecological
survey data.) Parameter estimation was based on the 1958-2014
time series; however, an indicator variable (p) was used to
identify years associated with the pre- and postperturbation
periods and allow for period-specific parameter estimates. All
analyses were performed using AD Model Builder (Fournier
et al. 2012) and R (R Development Core Team 2015).

We used a log-link function to determine expected Walleye
catch, such that the natural logarithm of the catch (1) in year ¢
at site j was a linear function of the predictors:

Ny =Vp +A-t+ay+ b,

where v,is the period-specific intercept, A is the fixed slope for a
temporal trend using year (¢) as the covariate, and a,, and b;, are
period-specific estimates of the random effects (VanLeeuwen
et al. 1996) associated with year and site, respectively. The year
covariate was centered on the mean year to improve convergence
and increase the interpretability of the intercept parameter. The
global trend (A) was assumed to be influenced by longer-term
processes and therefore was estimated as a single parameter
applied to the full time series. Random effects provide a way to
quantify the effect of a grouping level (year or site) in relation to
the mean effect of all groups combined. All random effects were
assumed to be independent and identically distributed according
to a Gaussian distribution with a mean of 0 and a variance of 6,2,
where x represents the distinct random effects (spatial or tem-
poral). Specific parameters were allowed to vary by time period
based on our hypothesis that variance structure would be respon-
sive to perturbation, such that the mean and variance components
were time-period specific.
The remaining two equations in the model are

y = exp(n, )

Y;; ~ NegBinom (ptj, Kp) ,

where p,; is the expected Walleye catch in year ¢ at site j on the
original (nonlogarithmic) scale, Y, is the observed Walleye
catch in year ¢ at site j, and x, is the period-specific shape
parameter of the negative binomial distribution. In each year,
k determines how much extra (above-Poisson) variation there
is among sites through its relationship with p. The variance of
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the negative binomial distribution is assumed to be a quadratic
function of the mean, with the quadratic term being dependent
on the shape parameter, that is,

2
My

Kp

var; = H; +

Thus, the relationship of the variation to the mean is allowed
to differ between periods. Model fit was evaluated using
Anscombe residuals (Anscombe 1953; Hilbe 2011).

Likelihood profiling was used to determine the year in
which the change from the pre- to the postperturbation period
occurred. We evaluated the above model at every possible
change-point year for the available data (i.e., all years except
the first and last ones in the time series) using the log-like-
lihood. All models were equally parsimonious, so that the
change point associated with the model with the largest log-
likelihood was deemed the most appropriate. Subsequent
results are based on the single, optimal change point.

We then used the linear mixed model with the optimal
change-point year to evaluate the magnitude and structure of
the variability in gill-net catches prior to and following the
dreissenid mussel invasion and the cormorant population
increase. We compared coherent temporal and spatial varia-
bility between periods to evaluate whether the structure of the
variability changed after perturbation.

In mixed models, random effects are often used to account
for clustering in the data, but they can also offer additional
information about the behavior of the individual grouping
variables (e.g., sites and years). In this study, we were speci-
fically interested in understanding whether all sites have
declined proportionately from historical catch levels or
whether there has been a disproportionate shift among sites.
A large positive site random effect would indicate that a site
contributed more to Walleye catch than average for a particu-
lar period, and a large negative random effect would indicate
that a site contributed less than average. If there were no
changes in the relative contributions of sites following the
perturbations, we would not expect a shift in the site random
effect rankings even if a decline in the mean response was
observed due to lower overall catch rates.

RESULTS

The likelihood profiling indicated that 1989 was the optimal
change-point year for separating the gill-net time series into
pre- and postperturbation periods. There was a distinct peak in
the log-likelihood surrounding the perceived timing (1988-
1991) of the ecological shifts in Oneida Lake (Figure 1). The
minimum, mean, and maximum annual catches of Walleyes
were lower during the later time period. The mean catch was
reduced by about 50%, and the maximum catch was about 40%
of that in the preperturbation period (Figure 2; Table 1).
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FIGURE 1. Log-likelihood values of Walleye catch plotted across possible
change-point years. The solid black line represents the likelihood profile for
the full time series; the colored lines represent likelihood profiles from
truncated time series (i.e., with the removal of early and/or late years). The
change-point was robust to time series length. The log-likelihood values are
not shown along the y-axis owing to scaling differences among the four time
series; the peak around 1989 indicates the optimal change point.

Importantly, we also observed a reduction in the variability
in catch rates over time, as high catches at individual sites
became less frequent (Figure 2). The shape parameter of the
negative binomial distribution was slightly higher during the
postperturbation period (Table 1), indicating a small reduction

200
150
€
3
O 100
50
0
1960 1970 1980 1990 2000 2010
Year

FIGURE 2. Observed Walleye catch by site and year for fifteen fixed sites in
Oneida Lake from 1958 to 2014 (data were not available for 1974). The black
line represents mean annual catches over time, the green dots represent the
catches at individual sites in preperturbation period, and the blue dots repre-
sent the catches at the individual sites in the postperturbation period.
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TABLE 1. Summary statistics (mean, minimum, maximum, and sample size
of Walleye gill-net catches) aggregated across all sites and parameter esti-
mates (SDs in parentheses) from the linear mixed model for the pre- (1958-
1988, except for 1974) and postperturbation (1989-2014) periods in Oneida
Lake, New York. Slope was not modeled as time-period specific.

Statistic or estimate Pre Post
Observed catches
Mean 32 17
Minimum 1 0
Maximum 220 90
Sample size 450 390

Parameter estimates
Fixed effects
Intercept (n)
Slope (L)
Shape parameter (k)
Random effects
Coherent temporal (c,%)
Spatial (5,°)

3.267 (0.186)
0.002 (0.006)
2.091 (0.155)

2.709 (0.148)
0.002 (0.006)
2.346 (0.203)

0.102 (0.039)
0.345 (0.133)

0.117 (0.045)
0.096 (0.043)

in the rate at which the variance in gill-net catches changed
with the mean. Thus, in addition to the reduction in the total
variability the structure of the variability also changed follow-
ing 1989, particularly spatial variability (Figure 3; Table 1).
The predicted catches from the negative binomial mixed
model were in general agreement with the observed data for
both the pre- and postperturbation periods (Figure 4). The
Anscombe residuals that were used to further evaluate model
fit appeared to be approximately normally distributed across
the range of the predicted values; there was no indication of
extreme outliers (Figure 5).

In the model, the maximum likelihood estimate for spatial
variability (,°), which was 0.35 in the years prior to the break
point, and declined to 0.10 in the postperturbation period
(Table 1; Figure 3)—a 72% reduction in the estimated
among-site variability. By contrast, the temporal variability
remained relatively stable between the two time periods (pre:
6,2 = 0.10; post: ,° = 0.12). Additionally, the decline in
spatial variability reflected proportionally different relative
changes at the different sites, as indicated by the shifting
rank order of the site-specific random effects (Figure 6A).
The difference between the post- and preperturbation random
effects provides a relative measure of the contributions of the
individual sites that might help us understand these patterns by
pinpointing the relevant site-specific attributes. This analysis,
however, was not designed to investigate specific causal
mechanisms operating within this system but to investigate
the potential for variance structure to serve as a statistical
indicator of some complex responses to large-scale perturba-
tion. Purely for illustrative purposes, we performed post hoc
analyses to evaluate the site characteristics (i.e., substrate type,
depth, and distance from shore) of the survey locations vis-a-

VIDAL ET AL.

vis the difference in spatial random effect values between the
pre- and postperturbation time periods. This exploratory ana-
lysis indicated that Walleye catches at the inshore sites have
generally declined more severely than those at the offshore
sites (Figure 6B). The mean catches at the inshore sites (n = 9)
all declined following the perturbations, while those at one-
third of the offshore sites (n = 6) increased slightly. Even so,
some of the highest overall catches continue to come from the
inshore sites. Coherent temporal variability (c,”) was rela-
tively unchanged between the two time periods (Figure 3)
and represented a relatively small component of the total
variability during the preperturbation period (about 23%).
Due to the decline in spatial variability, however, the estimates
of coherent temporal and spatial variability were about equal
in the postperturbation period (Table 1).

DISCUSSION

We were able to objectively detect a change point in the
time series of Walleye catches that is consistent with the
timing of perceived ecological shifts in Oneida Lake (e.g.,
Mayer et al. 2000; Irwin et al. 2008b, 2016; Coleman et al.
2016) and quantify shifts in the variance structure using a
mixed modeling approach. In this lake, there has been a
marked decline in gill-net catches of Walleyes over time.
Concurrent with the decline in the mean catch of Walleyes, a
reduction in the site-to-site variability was observed, suggest-
ing homogenization across sites in terms of relative catches.
Additionally, we have shown that the variance structure was
time sensitive; therefore, variance partitioning appears to be
useful for providing additional, finer-scale information about
the responses to ecological shifts—information beyond that
provided by the changes in means or total variability.

Disentangling the spatial and temporal components of varia-
bility provides information about how a system is changing across
space and through time, a property that could be useful for the
adaptation of management and monitoring to dynamic ecosys-
tems. For example, random effects could be used to evaluate
differential growth rates due to geographic location or gradual
shifts over time. Increasing variance has been proposed as a signal
associated with the transition between stable states (Brock and
Carpenter 2006; Scheffer et al. 2009; Carpenter et al. 2011), but the
responsiveness of variance components to large-scale ecological
change appears to be a relatively new development (however, see
Guttal and Jayaprakash 2009). By decomposing variability into
time-varying component sources, we were able to identify spa-
tially explicit changes (e.g., a disproportionate diminishing of
high-catch events) beyond those that could have been inferred
from the mean response alone. In this study, we were interested
in the general behavior of variance structure in response to pertur-
bation; however, this analytical approach could be extended to
other investigations, such as examining the responses to alternative
management regimes, comparing variability across physiographic
regions, and describing differences among climate zones.
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FIGURE 3. Normal density plots showing the shifts in (A) spatial and (B) temporal variability relative to the period-specific mean catch during the pre- and

postperturbation periods (represented by the green and blue areas, respectively).

Our mixed-modeling approach provided evidence that the
sources of variability associated with a response variable can
change in relative importance over time and in response to
perturbation. In our study, temporal variability remained rela-
tively unchanged, whereas the spatial variance component was
reduced by 72%. In addition to the fact that the overall spatial
variance parameter was reduced in the latter part of the time
series, the individual sampling sites did not respond in a
consistent manner. Generally, there was a homogenization
across sites toward lower Walleye catches, with a reduction
in the spatial patchiness of catch rates and a reorganization of
the rankings of the site-level random effects.

The estimated timing of the change point as determined
through likelihood profiling (1989) was generally consistent
with the observed timing of important changes in Oneida
Lake. Expansion of the cormorant colony throughout the
1980s and 1990s led to increased consumption of percids
(Coleman et al. 2016), while the dreissenid mussel invasion
increased water clarity, thereby altering the food web structure
(Mayer et al. 2002) and perhaps altering predator—prey and

species—gear interactions. Following the establishment of dreis-
senid mussels, the mortality of larval Walleyes increased, pos-
sibly as a result of higher predation due to increased water
clarity (Jackson et al. 2016; Rudstam et al. 2016a).
Additionally, competition with littoral predators (Fetzer et al.
2016; Jackson et al. 2016) increased, likely due to a loss of
Walleyes’ competitive advantage in more turbid waters.
Cormorants and dreissenid mussels are considered the putative
drivers of change in Oneida Lake, but other factors are likely to
have contributed to the changes in Walleye abundance (e.g., the
abundance of White Perch, a predator of larval percids). The
optimal change-point year was fairly robust to the length of the
time series; when we re-profiled the likelihood with truncated
time series, the change-point was estimated to be between 1988
and 1991 for each analysis (Figure 1). The long-term trend was
estimated to be approximately 0 and therefore was not likely to
have influenced the change point. However, modeling multiple
change points and trends would be possible with this framework
(assuming that there are sufficient data to avoid
overparameterization).
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The shift in site rank order suggests that Walleyes have
transitioned away from the littoral zone into more offshore
habitats. The mechanisms driving this shift are unknown, but
the changes to water clarity and cormorant predation may have
made the littoral zone less suitable as Walleye habitat. The
observed shifts could also be partly a consequence of changes
in gill-net catchability in the different habitats. For example, the
sampling gear may have been more visible to Walleyes in the
clear, inshore waters, enhancing their avoidance strategies. If
catchability has changed, this bifurcation in the time series is
important with respect to possible inferences about population
trends. There is some evidence of a rebounding of the Walleye
population and increasing spatial variability toward the latter
portion of the time series, which may be a response to a
cormorant control program that was intensified in 2004 com-
bined with a reduced creel limit in 2001 (Coleman et al. 2016).

Understanding major ecological shifts is important to the
management of natural resources (Folke et al. 2004; Brock
and Carpenter 2006; Scheffer et al. 2009). Continued develop-
ment of quantifiable signals of such shifts was the motivation
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FIGURE 5. Plot of Anscombe residuals based on fitting a negative binomial
mixed model to the catches of Walleyes. Green dots depict values from the
preperturbation period, blue dots values from the postperturbation period.
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effects (i.e., postperturbation less preperturbation) for inshore and offshore sites. The boxes represent the interquartile range of the values, with the dark
horizontal line indicating the median value, and whiskers extending to the most extreme value within 1.5x the interquartile range. The circles in panel (A)
represent individual sites; the lines connect the individual site random effects between the two time periods to show how a site’s rank changed relative to the

other sites in terms of catch magnitude.

for this study. Our model provides some evidence that variance
components are responsive to perturbations and thus that they
may serve as indicators of large-scale ecological reorganiza-
tion. This approach could also help reveal patterns that may not
otherwise be obvious, prompting investigation into the mechan-
isms driving population-level responses or even ecological
shifts. Likewise, the variance-partitioning approach may help
managers more fully consider what types of changes would be
desirable or acceptable. For instance, the loss of rare top per-
formers (e.g., abundant species and high-catch locations) might
be undesirable even if a decline, on average, is not significant.

Additional research on shifting variance structures for dif-
ferent systems and dynamics will help confirm whether the
reliable, general behavior of variance components will emerge
as an improved technique for quantifying responses to large-
scale perturbation and detecting shifting dynamics in a chan-
ging environment. Understanding how ecosystem dynamics
are shifting through time and in response to environmental
conditions will require a commitment to spatially and tempo-
rally consistent data collection over the long term. Even at

Oneida Lake, which is a well-studied system with rich biolo-
gical data from long-term monitoring programs, there are
important data limitations. For instance, the basic data struc-
ture (one observation per site per year) prevented us from
assessing ephemeral temporal variability (Kratz et al. 1995;
Irwin et al. 2013). Proper sampling design is therefore para-
mount to addressing specific research questions.

The approach described in this article could be extended to
address the uncertainties surrounding other important issues,
such as climate-induced shifts in communities’ and species’
distributions, the effects of invasive species, the sustainability
of exploitation, pollution, and habitat degradation. For exam-
ple, climate models have predicted that extreme events (e.g.,
drought, above-average temperatures, and high-precipitation
events) will increase in prevalence and intensity (Rahmstorf
and Coumou 2011; Rummukainen 2012), thereby potentially
altering the variance and variance structure of natural phenom-
ena irrespective of the changes to the mean response.
Additionally, as species’ distributions change other conse-
quences will manifest themselves through changes in food
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web dynamics and the competition for habitat resources as
well as through potential shifts in vital rates for species that
approach their range limits, either geographic or thermal. Any
of the aforementioned disturbances can create instability in the
state-space of a system—instability that could eventually lead
to a new nominal state, perhaps necessitating new monitoring
and management measures.
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